Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Methylselenol formed by spontaneous methylation of selenide is a superior selenium substrate to the thioredoxin and glutaredoxin systems.

Identifieur interne : 000845 ( Main/Exploration ); précédent : 000844; suivant : 000846

Methylselenol formed by spontaneous methylation of selenide is a superior selenium substrate to the thioredoxin and glutaredoxin systems.

Auteurs : Aristi P. Fernandes [Suède] ; Marita Wallenberg ; Valentina Gandin ; Sougat Misra ; Francesco Tisato ; Cristina Marzano ; Maria Pia Rigobello ; Sushil Kumar ; Mikael Björnstedt

Source :

RBID : pubmed:23226364

Descripteurs français

English descriptors

Abstract

Naturally occurring selenium compounds like selenite and selenodiglutathione are metabolized to selenide in plants and animals. This highly reactive form of selenium can undergo methylation and form monomethylated and multimethylated species. These redox active selenium metabolites are of particular biological and pharmacological interest since they are potent inducers of apoptosis in cancer cells. The mammalian thioredoxin and glutaredoxin systems efficiently reduce selenite and selenodiglutathione to selenide. The reactions are non-stoichiometric aerobically due to redox cycling of selenide with oxygen and thiols. Using LDI-MS, we identified that the addition of S-adenosylmethionine (SAM) to the reactions formed methylselenol. This metabolite was a superior substrate to both the thioredoxin and glutaredoxin systems increasing the velocities of the nonstoichiometric redox cycles three-fold. In vitro cell experiments demonstrated that the presence of SAM increased the cytotoxicity of selenite and selenodiglutathione, which could neither be explained by altered selenium uptake nor impaired extra-cellular redox environment, previously shown to be highly important to selenite uptake and cytotoxicity. Our data suggest that selenide and SAM react spontaneously forming methylselenol, a highly nucleophilic and cytotoxic agent, with important physiological and pharmacological implications for the highly interesting anticancer effects of selenium.

DOI: 10.1371/journal.pone.0050727
PubMed: 23226364
PubMed Central: PMC3511371


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Methylselenol formed by spontaneous methylation of selenide is a superior selenium substrate to the thioredoxin and glutaredoxin systems.</title>
<author>
<name sortKey="Fernandes, Aristi P" sort="Fernandes, Aristi P" uniqKey="Fernandes A" first="Aristi P" last="Fernandes">Aristi P. Fernandes</name>
<affiliation wicri:level="3">
<nlm:affiliation>Division of Pathology F46, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden. aristi.fernandes@ki.se</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Division of Pathology F46, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wallenberg, Marita" sort="Wallenberg, Marita" uniqKey="Wallenberg M" first="Marita" last="Wallenberg">Marita Wallenberg</name>
</author>
<author>
<name sortKey="Gandin, Valentina" sort="Gandin, Valentina" uniqKey="Gandin V" first="Valentina" last="Gandin">Valentina Gandin</name>
</author>
<author>
<name sortKey="Misra, Sougat" sort="Misra, Sougat" uniqKey="Misra S" first="Sougat" last="Misra">Sougat Misra</name>
</author>
<author>
<name sortKey="Tisato, Francesco" sort="Tisato, Francesco" uniqKey="Tisato F" first="Francesco" last="Tisato">Francesco Tisato</name>
</author>
<author>
<name sortKey="Marzano, Cristina" sort="Marzano, Cristina" uniqKey="Marzano C" first="Cristina" last="Marzano">Cristina Marzano</name>
</author>
<author>
<name sortKey="Rigobello, Maria Pia" sort="Rigobello, Maria Pia" uniqKey="Rigobello M" first="Maria Pia" last="Rigobello">Maria Pia Rigobello</name>
</author>
<author>
<name sortKey="Kumar, Sushil" sort="Kumar, Sushil" uniqKey="Kumar S" first="Sushil" last="Kumar">Sushil Kumar</name>
</author>
<author>
<name sortKey="Bjornstedt, Mikael" sort="Bjornstedt, Mikael" uniqKey="Bjornstedt M" first="Mikael" last="Björnstedt">Mikael Björnstedt</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:23226364</idno>
<idno type="pmid">23226364</idno>
<idno type="doi">10.1371/journal.pone.0050727</idno>
<idno type="pmc">PMC3511371</idno>
<idno type="wicri:Area/Main/Corpus">000786</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000786</idno>
<idno type="wicri:Area/Main/Curation">000786</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000786</idno>
<idno type="wicri:Area/Main/Exploration">000786</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Methylselenol formed by spontaneous methylation of selenide is a superior selenium substrate to the thioredoxin and glutaredoxin systems.</title>
<author>
<name sortKey="Fernandes, Aristi P" sort="Fernandes, Aristi P" uniqKey="Fernandes A" first="Aristi P" last="Fernandes">Aristi P. Fernandes</name>
<affiliation wicri:level="3">
<nlm:affiliation>Division of Pathology F46, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden. aristi.fernandes@ki.se</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Division of Pathology F46, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wallenberg, Marita" sort="Wallenberg, Marita" uniqKey="Wallenberg M" first="Marita" last="Wallenberg">Marita Wallenberg</name>
</author>
<author>
<name sortKey="Gandin, Valentina" sort="Gandin, Valentina" uniqKey="Gandin V" first="Valentina" last="Gandin">Valentina Gandin</name>
</author>
<author>
<name sortKey="Misra, Sougat" sort="Misra, Sougat" uniqKey="Misra S" first="Sougat" last="Misra">Sougat Misra</name>
</author>
<author>
<name sortKey="Tisato, Francesco" sort="Tisato, Francesco" uniqKey="Tisato F" first="Francesco" last="Tisato">Francesco Tisato</name>
</author>
<author>
<name sortKey="Marzano, Cristina" sort="Marzano, Cristina" uniqKey="Marzano C" first="Cristina" last="Marzano">Cristina Marzano</name>
</author>
<author>
<name sortKey="Rigobello, Maria Pia" sort="Rigobello, Maria Pia" uniqKey="Rigobello M" first="Maria Pia" last="Rigobello">Maria Pia Rigobello</name>
</author>
<author>
<name sortKey="Kumar, Sushil" sort="Kumar, Sushil" uniqKey="Kumar S" first="Sushil" last="Kumar">Sushil Kumar</name>
</author>
<author>
<name sortKey="Bjornstedt, Mikael" sort="Bjornstedt, Mikael" uniqKey="Bjornstedt M" first="Mikael" last="Björnstedt">Mikael Björnstedt</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antineoplastic Agents (metabolism)</term>
<term>Antineoplastic Agents (pharmacology)</term>
<term>Biological Transport (MeSH)</term>
<term>Cell Line, Tumor (MeSH)</term>
<term>Cell Survival (drug effects)</term>
<term>Cytochromes c (metabolism)</term>
<term>Disulfides (metabolism)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutathione (analogs & derivatives)</term>
<term>Glutathione (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Intracellular Space (metabolism)</term>
<term>Methanol (analogs & derivatives)</term>
<term>Methanol (metabolism)</term>
<term>Methanol (pharmacology)</term>
<term>Methylation (MeSH)</term>
<term>Organoselenium Compounds (metabolism)</term>
<term>Organoselenium Compounds (pharmacology)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Protein Binding (MeSH)</term>
<term>S-Adenosylmethionine (metabolism)</term>
<term>S-Adenosylmethionine (pharmacology)</term>
<term>Selenium Compounds (metabolism)</term>
<term>Selenium Compounds (pharmacology)</term>
<term>Superoxides (metabolism)</term>
<term>Thioredoxin-Disulfide Reductase (metabolism)</term>
<term>Thioredoxins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adémétionine (métabolisme)</term>
<term>Adémétionine (pharmacologie)</term>
<term>Antinéoplasiques (métabolisme)</term>
<term>Antinéoplasiques (pharmacologie)</term>
<term>Composés du sélénium (métabolisme)</term>
<term>Composés du sélénium (pharmacologie)</term>
<term>Composés organiques du sélénium (métabolisme)</term>
<term>Composés organiques du sélénium (pharmacologie)</term>
<term>Cytochromes c (métabolisme)</term>
<term>Disulfures (métabolisme)</term>
<term>Espace intracellulaire (métabolisme)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutathion (analogues et dérivés)</term>
<term>Glutathion (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Lignée cellulaire tumorale (MeSH)</term>
<term>Méthanol (analogues et dérivés)</term>
<term>Méthanol (métabolisme)</term>
<term>Méthanol (pharmacologie)</term>
<term>Méthylation (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Superoxydes (métabolisme)</term>
<term>Survie cellulaire (effets des médicaments et des substances chimiques)</term>
<term>Thioredoxin-disulfide reductase (métabolisme)</term>
<term>Thiorédoxines (métabolisme)</term>
<term>Transport biologique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Glutathione</term>
<term>Methanol</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Antineoplastic Agents</term>
<term>Cytochromes c</term>
<term>Disulfides</term>
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Methanol</term>
<term>Organoselenium Compounds</term>
<term>S-Adenosylmethionine</term>
<term>Selenium Compounds</term>
<term>Superoxides</term>
<term>Thioredoxin-Disulfide Reductase</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antineoplastic Agents</term>
<term>Methanol</term>
<term>Organoselenium Compounds</term>
<term>S-Adenosylmethionine</term>
<term>Selenium Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Glutathion</term>
<term>Méthanol</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cell Survival</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Survie cellulaire</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Intracellular Space</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Adémétionine</term>
<term>Antinéoplasiques</term>
<term>Composés du sélénium</term>
<term>Composés organiques du sélénium</term>
<term>Cytochromes c</term>
<term>Disulfures</term>
<term>Espace intracellulaire</term>
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Méthanol</term>
<term>Superoxydes</term>
<term>Thioredoxin-disulfide reductase</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Adémétionine</term>
<term>Antinéoplasiques</term>
<term>Composés du sélénium</term>
<term>Composés organiques du sélénium</term>
<term>Méthanol</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Transport</term>
<term>Cell Line, Tumor</term>
<term>Humans</term>
<term>Methylation</term>
<term>Oxidation-Reduction</term>
<term>Protein Binding</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Humains</term>
<term>Liaison aux protéines</term>
<term>Lignée cellulaire tumorale</term>
<term>Méthylation</term>
<term>Oxydoréduction</term>
<term>Transport biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Naturally occurring selenium compounds like selenite and selenodiglutathione are metabolized to selenide in plants and animals. This highly reactive form of selenium can undergo methylation and form monomethylated and multimethylated species. These redox active selenium metabolites are of particular biological and pharmacological interest since they are potent inducers of apoptosis in cancer cells. The mammalian thioredoxin and glutaredoxin systems efficiently reduce selenite and selenodiglutathione to selenide. The reactions are non-stoichiometric aerobically due to redox cycling of selenide with oxygen and thiols. Using LDI-MS, we identified that the addition of S-adenosylmethionine (SAM) to the reactions formed methylselenol. This metabolite was a superior substrate to both the thioredoxin and glutaredoxin systems increasing the velocities of the nonstoichiometric redox cycles three-fold. In vitro cell experiments demonstrated that the presence of SAM increased the cytotoxicity of selenite and selenodiglutathione, which could neither be explained by altered selenium uptake nor impaired extra-cellular redox environment, previously shown to be highly important to selenite uptake and cytotoxicity. Our data suggest that selenide and SAM react spontaneously forming methylselenol, a highly nucleophilic and cytotoxic agent, with important physiological and pharmacological implications for the highly interesting anticancer effects of selenium.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23226364</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>05</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Methylselenol formed by spontaneous methylation of selenide is a superior selenium substrate to the thioredoxin and glutaredoxin systems.</ArticleTitle>
<Pagination>
<MedlinePgn>e50727</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0050727</ELocationID>
<Abstract>
<AbstractText>Naturally occurring selenium compounds like selenite and selenodiglutathione are metabolized to selenide in plants and animals. This highly reactive form of selenium can undergo methylation and form monomethylated and multimethylated species. These redox active selenium metabolites are of particular biological and pharmacological interest since they are potent inducers of apoptosis in cancer cells. The mammalian thioredoxin and glutaredoxin systems efficiently reduce selenite and selenodiglutathione to selenide. The reactions are non-stoichiometric aerobically due to redox cycling of selenide with oxygen and thiols. Using LDI-MS, we identified that the addition of S-adenosylmethionine (SAM) to the reactions formed methylselenol. This metabolite was a superior substrate to both the thioredoxin and glutaredoxin systems increasing the velocities of the nonstoichiometric redox cycles three-fold. In vitro cell experiments demonstrated that the presence of SAM increased the cytotoxicity of selenite and selenodiglutathione, which could neither be explained by altered selenium uptake nor impaired extra-cellular redox environment, previously shown to be highly important to selenite uptake and cytotoxicity. Our data suggest that selenide and SAM react spontaneously forming methylselenol, a highly nucleophilic and cytotoxic agent, with important physiological and pharmacological implications for the highly interesting anticancer effects of selenium.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fernandes</LastName>
<ForeName>Aristi P</ForeName>
<Initials>AP</Initials>
<AffiliationInfo>
<Affiliation>Division of Pathology F46, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden. aristi.fernandes@ki.se</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wallenberg</LastName>
<ForeName>Marita</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gandin</LastName>
<ForeName>Valentina</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Misra</LastName>
<ForeName>Sougat</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tisato</LastName>
<ForeName>Francesco</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Marzano</LastName>
<ForeName>Cristina</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rigobello</LastName>
<ForeName>Maria Pia</ForeName>
<Initials>MP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kumar</LastName>
<ForeName>Sushil</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Björnstedt</LastName>
<ForeName>Mikael</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>11</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000970">Antineoplastic Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004220">Disulfides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016566">Organoselenium Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018036">Selenium Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>11062-77-4</RegistryNumber>
<NameOfSubstance UI="D013481">Superoxides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>33944-90-0</RegistryNumber>
<NameOfSubstance UI="C017710">selenodiglutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>60343-91-1</RegistryNumber>
<NameOfSubstance UI="C019003">methaneselenol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7LP2MPO46S</RegistryNumber>
<NameOfSubstance UI="D012436">S-Adenosylmethionine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-43-6</RegistryNumber>
<NameOfSubstance UI="D045304">Cytochromes c</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.9</RegistryNumber>
<NameOfSubstance UI="D013880">Thioredoxin-Disulfide Reductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>Y4S76JWI15</RegistryNumber>
<NameOfSubstance UI="D000432">Methanol</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000970" MajorTopicYN="N">Antineoplastic Agents</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045744" MajorTopicYN="N">Cell Line, Tumor</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002470" MajorTopicYN="N">Cell Survival</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045304" MajorTopicYN="N">Cytochromes c</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004220" MajorTopicYN="N">Disulfides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042541" MajorTopicYN="N">Intracellular Space</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000432" MajorTopicYN="N">Methanol</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="Y">analogs & derivatives</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008745" MajorTopicYN="N">Methylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016566" MajorTopicYN="N">Organoselenium Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012436" MajorTopicYN="N">S-Adenosylmethionine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018036" MajorTopicYN="N">Selenium Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013481" MajorTopicYN="N">Superoxides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013880" MajorTopicYN="N">Thioredoxin-Disulfide Reductase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>08</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>10</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>12</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>12</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>5</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23226364</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0050727</ArticleId>
<ArticleId IdType="pii">PONE-D-12-23924</ArticleId>
<ArticleId IdType="pmc">PMC3511371</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 1971 Oct 26;10(22):4089-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4400818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pathol Res Pract. 2010 Jun 15;206(6):357-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20188485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1990 Dec 31;173(3):1143-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2268318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer Ther. 2002 Oct;1(12):1059-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12481429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1966 Mar;5(3):1089-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4380351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2001 Apr 1;61(7):3062-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11306488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Submicrosc Cytol Pathol. 1995 Jan;27(1):21-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7697619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Physiol. 2007 Aug;212(2):386-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17348006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Mar 22;277(12):9701-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11782468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Basic Life Sci. 1988;49:663-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3074794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Apr 1;12(7):867-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19769465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem A. 2008 Aug 28;112(34):7969-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18683913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1968 Oct 24;25(1):192-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4973948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 May 19;270(20):11761-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7744824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Cancer. 2007 May 1;120(9):2034-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17230520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Apr 17;104(16):6678-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17426150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EPMA J. 2010 Sep;1(3):389-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23199083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1968 Aug;7(8):2898-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5666757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Apr 25;267(12):8030-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1569062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1995;252:209-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7476355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncol Rep. 2008 Sep;20(3):557-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18695906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2010 Jul 1;429(1):85-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20408818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Appl Pharmacol. 2008 Jan 15;226(2):169-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17988700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hepatol Res. 2009 Nov;39(11):1125-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19624763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1006-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8577704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biodivers. 2008 Mar;5(3):389-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18357548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer Ther. 2006 Aug;5(8):2078-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16928829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecotoxicol Environ Saf. 2004 May;58(1):17-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15087158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 1999 Jan;26(1-2):42-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9890639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anticancer Res. 1998 Nov-Dec;18(6A):4019-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9891440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Xenobiotica. 1993 Jul;23(7):731-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8237056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2007 Jul;1770(7):1053-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17451884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Jul;9(7):775-806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17508906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Prev Res (Phila). 2009 May;2(5):484-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19401524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acc Chem Res. 2010 Nov 16;43(11):1408-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20690615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11400-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19549867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1992 Jul 15;207(2):435-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1321713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Trauma. 2010 Apr;68(4):853-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20386280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Environ Sci. 1997 Sep;10(2-3):271-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9315320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1996;65:83-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8811175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biol Sci. 2010;6(7):784-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21152119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1995;252:283-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7476363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Ther. 1997;73(3):265-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9175157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Trace Elem Med Biol. 2010 Oct;24(4):263-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20678908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Clin Nutr. 2002 Nov;76(5):1151S-7S</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12418493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Amino Acids. 2011 Jun;41(1):29-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Repair (Amst). 2007 Apr 1;6(4):429-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17112791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1977 Mar 29;497(1):205-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anticancer Res. 1998 Jan-Feb;18(1A):9-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9568048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nutr. 2009 Sep;139(9):1613-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19625696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1995;252:199-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7476354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Org Biomol Chem. 2010 Feb 21;8(4):828-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20135040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anticancer Agents Med Chem. 2010 May;10(4):338-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20380634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17682-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19004804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carcinogenesis. 1994 Jul;15(7):1387-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8033315</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
<region>
<li>Svealand</li>
</region>
<settlement>
<li>Stockholm</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Bjornstedt, Mikael" sort="Bjornstedt, Mikael" uniqKey="Bjornstedt M" first="Mikael" last="Björnstedt">Mikael Björnstedt</name>
<name sortKey="Gandin, Valentina" sort="Gandin, Valentina" uniqKey="Gandin V" first="Valentina" last="Gandin">Valentina Gandin</name>
<name sortKey="Kumar, Sushil" sort="Kumar, Sushil" uniqKey="Kumar S" first="Sushil" last="Kumar">Sushil Kumar</name>
<name sortKey="Marzano, Cristina" sort="Marzano, Cristina" uniqKey="Marzano C" first="Cristina" last="Marzano">Cristina Marzano</name>
<name sortKey="Misra, Sougat" sort="Misra, Sougat" uniqKey="Misra S" first="Sougat" last="Misra">Sougat Misra</name>
<name sortKey="Rigobello, Maria Pia" sort="Rigobello, Maria Pia" uniqKey="Rigobello M" first="Maria Pia" last="Rigobello">Maria Pia Rigobello</name>
<name sortKey="Tisato, Francesco" sort="Tisato, Francesco" uniqKey="Tisato F" first="Francesco" last="Tisato">Francesco Tisato</name>
<name sortKey="Wallenberg, Marita" sort="Wallenberg, Marita" uniqKey="Wallenberg M" first="Marita" last="Wallenberg">Marita Wallenberg</name>
</noCountry>
<country name="Suède">
<region name="Svealand">
<name sortKey="Fernandes, Aristi P" sort="Fernandes, Aristi P" uniqKey="Fernandes A" first="Aristi P" last="Fernandes">Aristi P. Fernandes</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000845 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000845 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23226364
   |texte=   Methylselenol formed by spontaneous methylation of selenide is a superior selenium substrate to the thioredoxin and glutaredoxin systems.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23226364" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020